Visualizing and sharing Geoprocessing Workflows in the AfriAlliance project

Rob Lemmens, Robert Ohuru, Javier Morales
University of Twente, ITC, Hengelosestraat 99, 7514 AE
Enschede, The Netherlands
r.l.g.lemmens@utwente.nl
ILWIS: the Integrated Land and Water Information System

Education-friendly interface of ILWIS GIS-EO software: linked-views, visual data catalog, raster metadata view, etc.

Create, debug and share geoprocessing workflows with visual workflow builder
The interoperability issue..
Shareability & Reproducibility

Shareability
Transfer workflow from one user/environment to another.
Requires a standard interchange format.

Reproducibility
Recreate and reuse workflow with same conditions to achieve similar results.
Requires provenance information.
Comparison of workflow systems

<table>
<thead>
<tr>
<th>Property</th>
<th>ILWIS</th>
<th>QGIS</th>
<th>ERDAS</th>
<th>ArcGIS</th>
<th>BPM tools</th>
<th>OGC GPW</th>
<th>KNIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which exchange format is used?</td>
<td>JSON</td>
<td>JSON & XML</td>
<td>JSON</td>
<td>Python</td>
<td>XML</td>
<td>XML</td>
<td>XML</td>
</tr>
<tr>
<td>Does the schema of the format conform to a standard?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Is the workflow reproducible from this format?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Does it store enough metadata to describe a process?</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Does it support workflow composition from remote services?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Schema for standard interchange format
Architecture & implementation

- Schema design
- Schema implementation
- Interface development
- Workflow composition
- OGC Services implementations
- Workflow engine
- Service chaining
- Workflow execution
- Workflow Transformation

Diagram:
- Web Client
 - Create
 - Import
 - Export
 - Modify
 - Execute
- Internet
 - Request (JSON)
 - Response (JSON)
- Apache HTTP Server
 - Workflow Engine
 - Workflow Transformation
 - Workflow Execution
 - Python 3
- Libraries
- Remote services
- Data Services
 - WFS
 - WCS
 - SWE
 - Other
- Processing Services
 - WPS
 - Non-OGC RESTful Service
 - Other
- WPS Server
 - ILWIS
 - QGIS
 - ERDAS
 - ARCGIS
AfriAlliance project

Water Resources Monitoring & Forecasting using a Triple-Sensor Observation approach
Triple sensor approach sample workflow

Sub-Workflow SATSCAN

- CHIRPS Infrared
- TAMSAT
- RFE2

Region of interest

Derive accumulated Precipitation

Choice

LSASAF
Derive accumulated ET
P-ET

Sub-Workflow Groundscan

- Metao station
- GTS
- TAHMO

Region of interest

Choice

Derive accumulated ET
Derive accumulated Precipitation
P-ET

Sub-Workflow Citizen info scan

- Local weather station info
- Basic Local weather info

Derive accumulated Precipitation
P-ET

Citizen info on SD

Surplus Deficit (SD)
(Raster map, diagrams and tables)

Triple Collocation

Simple comparison
Evaluation report

Surplus Deficit (SD)
(Raster map, diagrams and tables)
Case study

Data Sources:

- Chirps rainfall (WCS)
- NOAA Climate Prediction Centre (SOS)
- Water Point Data Exchange database (SOS)
<table>
<thead>
<tr>
<th>Location</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>Best performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>pnt_608</td>
<td>0.816</td>
<td>0.814</td>
<td>1.063</td>
<td>1.065</td>
</tr>
<tr>
<td>pnt_610</td>
<td>0.770</td>
<td>0.768</td>
<td>0.997</td>
<td>1.000</td>
</tr>
<tr>
<td>pnt_611</td>
<td>0.644</td>
<td>0.640</td>
<td>0.870</td>
<td>0.876</td>
</tr>
<tr>
<td>pnt_619</td>
<td>0.700</td>
<td>0.705</td>
<td>0.888</td>
<td>0.882</td>
</tr>
<tr>
<td>pnt_620</td>
<td>0.601</td>
<td>0.598</td>
<td>0.869</td>
<td>0.873</td>
</tr>
<tr>
<td>pnt_648</td>
<td>0.589</td>
<td>0.592</td>
<td>0.729</td>
<td>0.725</td>
</tr>
<tr>
<td>pnt_1019</td>
<td>0.580</td>
<td>0.577</td>
<td>0.787</td>
<td>0.790</td>
</tr>
<tr>
<td>pnt_1100</td>
<td>0.823</td>
<td>0.823</td>
<td>1.004</td>
<td>1.004</td>
</tr>
<tr>
<td>pnt_1101</td>
<td>0.984</td>
<td>0.982</td>
<td>0.911</td>
<td>0.912</td>
</tr>
<tr>
<td>pnt_1163</td>
<td>0.910</td>
<td>0.910</td>
<td>1.062</td>
<td>1.062</td>
</tr>
<tr>
<td>pnt_1227</td>
<td>0.953</td>
<td>0.953</td>
<td>0.969</td>
<td>0.969</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.009</td>
<td>0.019</td>
<td>0.011</td>
<td></td>
</tr>
</tbody>
</table>

W1 ~ Satellite sensor, **W2** ~ In-situ sensor, **W3** ~ Citizen Sensor

A ~ Our method **B** ~ Mannaerts et al. (2018),
Result of triple sensor collocation

pnt 1163
Reporter : Ousmane
Ranking : Citizen, Satellite, InSitu
weight_Citizen : 1.55
weight_InSitu : 0.38
weight_Satellite : 0.57
error_Citizen : -104.95
error_InSitu : 291.95
error_Satellite : 44.67
Workflow software as Web application
Sharing the workflow with CAMUNDA WFMS
Further reading and contact

Rob Lemmens, Robert Ohuru, Javier Morales
University of Twente, ITC, Hengelosestraat 99, 7514 AE
Enschede, The Netherlands
r.l.g.lemmens@utwente.nl