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The idea of openEO

Develop an open API that connects 

various clients to big EO cloud backends 

in a simple and unified way
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Why?

● EO data now too large to download/handle

→ EO processing increasingly cloud-based

● Cloud-based EO solutions pop up like mushrooms

○ DIASs, TEPs, Google Earth Engine, Sentinel Hub, GeoTrellis, Rasdaman, …



Who knows GDAL?



graphics from http://r-spatial.org/2016/11/29/openeo.html
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Why?

● EO data now too large to download/handle

→ EO processing increasingly cloud-based

● Cloud-based EO solutions pop up like mushrooms

○ DIASs, TEPs, Google Earth Engine, Sentinel Hub, GeoTrellis, Rasdaman, …

● Combine different backends

● Extensibility

● Compare/validate results → reproducibility

● So far: Google Earth Engine the only feasible offering?

○ It’s easy and ready -- but not open.



What we do

● Define a RESTful API

● Implement reference implementations

○ 7 backends

○ 3 client libraries

● Define a process catalogue

○ extendable by user-defined functions

● Everything’s open source: https://github.com/Open-EO/

https://github.com/Open-EO/


Live Demo

http://hub.openeo.org/

http://hub.openeo.org/
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Standards

● Used existing standards where possible

○ REST, OpenAPI, GeoJSON, OpenID Connect, EPSG codes…

● Processing: not WPS (doesn’t support chaining) -- but driver for WCPS!

● Results: Exposing web services possible (WMS, WMTS, WCS, XYZ, ...)

● Compliant to OGC API Commons

● Working on STAC

(data discovery)



What we had

● 3 clients

● 7 backends

● 3 use cases

● a handful of processes



Progress over the last year

● New process graph structure
○ Parallelised processing

○ Callbacks

○ Multiple results

○ Process graph variables

● Adaption of client libraries and backend drivers

● Compatibility to OGC API - Commons

● Full process catalogue with 100+ processes defined
○ Backends can support arbitrary subset

○ Extendable by own definitions

● UDF reference implementations in R and Python



My lessons learned

● Programmers don’t read the docs

● Choosing and detailedly describing processes takes time

● Standardising the algorithms is feasible

● But it’s quite hard to standardise the data (“Analysis Ready Data”)

○ Non-uniform naming (e.g. “SENTINEL-2” vs. “COPERNICUS/S2” etc.)

○ Scientific vs. easy-to-use



Still to come

● Implementation of processes in backends

● Full compatibility to newest API version

● Fully tested, stable, 1.0-release-ready versions of everything

● ...



Challenges (content)

● Uniform naming of data collections

● Incorporating everything into one API

○ Dropped the idea of including everything, e.g. user management, settings, payments, ...

● User-defined functions

○ reference implementations in Python and R

● Efficient access to big data

○ data cube (raster and vector)

● Validating backends against each other (reproducibility)

○ Master thesis on comparing output

● Cost estimates

○ Billing model, but giving a “What would this cost?” quote seems hard



Challenges (project)

● Ensure user adoption (clients and servers)

○ Conferences, workshops, hackathons, social media, science slam ...

● Extend openEO to more backends

○ There are many more than the ones we address -- we can’t solve this alone

● Ensure project continuation

○ Big players on board (e.g. Google Earth Engine, Sinergise SentinelHub)

○ Consortium includes companies that will use openEO in production → interest to maintain it

○ Community project



Thanks for your attention!

Any questions?

https://openeo.org/     https://github.com/Open-EO     https://twitter.com/open_EO


