How the openEOQO project unifies access
to big Earth Observation data
processing platforms

Christoph Friedrich, Matthias Mohr, Edzer Pebesma

-open
N EO

The idea of openEO
Develop an open API that connects

various clients to big EO cloud backends
In a simple and unified way

This project has received m ok 4P S INERGISE
funding from the European f vito mundialis Q
Union's Horizon 2020 research

and innovation programme

under grant No 776242. eurac
JRC

0
research SOLENIX

Why?

e EO data now too large to download/handle
— EO processing increasingly cloud-based

e Cloud-based EO solutions pop up like mushrooms
o DIASs, TEPs, Google Earth Engine, Sentinel Hub, GeoTrellis, Rasdaman, ...

Who knows GDAL?

User User
User User

! ! A 4

GRASS Arc-Info AutoDesk Genesys

ol -

graphics from http://r-spatial.org/2016/11/29/openeo.html

User User

User User
GRASS Arc-Info S-Plus AutoDesk
[GeoTIFF
shapefile 2LF
TIGER

JPG2000]

o

User User User User User User User
QGIS GRASS ArcGIS Python R gdal utils GeoTrellis
GeoTIFF ' PostGIS]
[PG\R’$h=r]
L
n G2 S3
JPG2000 .

G qu

—

GML

IHDFS‘

L

shapefile

aT:Dr —

J

142 raster drivers
84 vector drivers

GEE Synergize PROBA-V EODC
user Users users users WUR JRC

T T T T users users
GEE Synergize | | GeoTrellis EODC EC JRC

VITO JEO-
h ﬁ é A &

EODC PROBA-V JRC
new users users users

Python

. Web mterface
interface

R mterface

WUR Synergize
SsEeEr‘. users Users Users
!
l |

client 1

client 3

client 1

client 2 client 3

graphic from openEO deliverable 5

Why?

e EO data now too large to download/handle
— EO processing increasingly cloud-based

e Cloud-based EO solutions pop up like mushrooms

o DIASs, TEPs, Google Earth Engine, Sentinel Hub, GeoTrellis, Rasdaman, ...

e Combine different backends
e Extensibility
e Compare/validate results — reproducibility

e So far: Google Earth Engine the only feasible offering?

o It's easy and ready -- but not open.

What we do

e Define a RESTful API

e Implement reference implementations

o 7 backends

o 3client libraries

e Define a process catalogue

o extendable by user-defined functions

e Everything's open source: https://github.com/Open-EO/

https://github.com/Open-EO/

Live Demo

http://hub.openeo.orqg/

http://hub.openeo.org/

Standards

e Used existing standards where possible
o REST, OpenAPI, GeoJSON, OpenlD Connect, EPSG codes...

e Processing: not WPS (doesn’t support chaining) -- but driver for WCPS!
e Results: Exposing web services possible (WMS, WMTS, WCS, XYZ, ...)
e Compliantto OGC APl Commons
e Working on STAC

eurac Sentinel Alpine
research | observatory

—R

E}, @ python’

(data discovery)

OpenNebula

S,
rasdaman' =

| JavaScript

=

graphic from openEO deliverable 6

What we had

e 3 clients
e 7 backends
e 3 uUSe cases

e a handful of processes

Progress over the last year

e New process graph structure
o Parallelised processing
o Callbacks
o Multiple results
o Process graph variables

e Adaption of client libraries and backend drivers
e Compatibility to OGC API - Commons

e Full process catalogue with 100+ processes defined

o Backends can support arbitrary subset
o Extendable by own definitions

e UDF reference implementations in R and Python

My lessons learned

e Programmers don’t read the docs
e Choosing and detailedly describing processes takes time
e Standardising the algorithms is feasible

e But it's quite hard to standardise the data (“Analysis Ready Data”)
o Non-uniform naming (e.g. “SENTINEL-2" vs. “COPERNICUS/S2” etc.)

o Scientific vs. easy-to-use

Still to come

e |Implementation of processes in backends
e Full compatibility to newest API version

e Fully tested, stable, 1.0-release-ready versions of everything

Challenges (content)

e Uniform naming of data collections
e Incorporating everything into one API
o Dropped the idea of including everything, e.g. user management, settings, payments, ...
e User-defined functions
o reference implementations in Python and R
e Efficient access to big data
o data cube (raster and vector)
e Validating backends against each other (reproducibility)
o Master thesis on comparing output
e Cost estimates

o Billing model, but giving a “What would this cost?” quote seems hard

Challenges (project)

e Ensure user adoption (clients and servers)
o Conferences, workshops, hackathons, social media, science slam ...
e Extend openEO to more backends
o There are many more than the ones we address -- we can'’t solve this alone
e Ensure project continuation
o Big players on board (e.g. Google Earth Engine, Sinergise SentinelHub)
o Consortium includes companies that will use openEQ in production — interest to maintain it

o Community project

Thanks for your attention!

Any guestions?

-open

https://openeo.org/ https://github.com/Open-EO https://twitter.com/open_EO

