Analyzing Multi-Variable Earth Observation Data Cubes

Geospatial Sensing 2020

Marius Appel

Aug 31, 2020

- Research associate and PhD student in Geoinformatics at University of Münster, Germany
- PhD topic "Facilitating Statistical Analysis of Large Satellite-Based Earth Observation Data"
- Main Interests:
 - Spatial Statistics / Spatial Data Science
 - Earth observation analytics (data cubes, array databases)
 - Applications in environmental modeling
 - Web development

• Open source software development (mostly in C++ and R)

- Overview of Earth Observation (EO) data cubes
- Demonstration of the gdalcubes library
- Present applications of data cubes for combining data from different EO missions
- Discuss challenges and ongoing developments

- 1. Motivation and Introduction to Earth Observation Data cubes
- 2. Introduction to gdalcubes
- 3. Applications
- 4. Discussion and Outlook

Introduction

Earth Observation Data Cubes

Availability of Earth Observation Data Availability of Analysis Methods (ML, Statistics)

Researcher / Data Scientist / ...

How to apply complex analysis methods on today's (satellite-based) Earth observation datasets?

Analysis ready?

			🔂 Hon	ne eodata	Sentinel2	_L2A Boc	aDoAcre 👻					۹			:=	▼ = -	- 🛛 🔕
zip S2A_ MSIL2A_ 20190502	S2A_ MSIL2A_ 20190509	S2A_ MSIL2A_ 20190509	S2A_ MSIL2A_ 20190509	s2A_ MSIL2A_ 20190509	s2A_ MSIL2A_ 20190509	zip S2A_ MSIL2A_ 20190509	S2A_ MSIL2A_ 20190519	zip S2A_ MSIL2A_ 20190519	s2A_ MSIL2A_ 20190522	s2A_ MSIL2A_ 20190522	s2A_ MSIL2A_ 20190529	s2A_ MSIL2A_ 20190529	S2A_ MSIL2A_ 20190529	s2A_ MSIL2A_ 20190529	52A_ MSIL2A_ 20190529	zip S2A_ MSIL2A_ 20190529	zip S2A_ MSIL2A_ 20190601
zip S2A_ MSIL2A_ 20190608	zip S2A_ MSIL2A_ 20190611	zip S2A_ MSIL2A_ 20190611	zip S2A_ MSIL2A_ 20190618	zip S2A_ MSIL2A_ 20190618	s2A_ MSIL2A_ 20190618	s2A_ MSIL2A_ 20190618	zip S2A_ MSIL2A_ 20190618	zip S2A_ MSIL2A_ 20190618	s2A_ MSIL2A_ 20190621	zip S2A_ MSIL2A_ 20190621	sza_ MSIL2A_ 20190628	zip S2A_ MSIL2A_ 20190628	s2A_ MSIL2A_ 20190628	s2A_ MSIL2A_ 20190628	zip S2A_ MSIL2A_ 20190628	zip S2A_ MSIL2A_ 20190628	sza_ MSIL2A_ 20190701
zip S2A_ MSIL2A_ 20190708	zip S2A_ MSIL2A_ 20190708	zip S2A_ MSIL2A_ 20190708	zip S2A_ MSIL2A_ 20190708	zip S2A_ MSIL2A_ 20190708	s2A_ MSIL2A_ 20190708	s2A_ MSIL2A_ 20190711	zip S2A_ MSIL2A_ 20190718	zip S2A_ MSIL2A_ 20190718	zip S2A_ MSIL2A_ 20190718	zip S2A_ MSIL2A_ 20190718	s2A_ MSIL2A_ 20190718	s2A_ MSIL2A_ 20190718	zip S2A_ MSIL2A_ 20190721	zip S2A_ MSIL2A_ 20190728	zip S2A_ MSIL2A_ 20190728	sza_ MSIL2A_ 20190728	s2A_ MSIL2A_ 20190728
zip S2A_ MSIL2A_ 20190728	zip S2A_ MSIL2A_ 20190728	zip S2A_ MSIL2A_ 20190731	zip S2A_ MSIL2A_ 20190807	zip S2A_ MSIL2A_ 20190807	s2A_ MSIL2A_ 20190807	zip S2A_ MSIL2A_ 20190807	zip S2A_ MSIL2A_ 20190807	zip S2A_ MSIL2A_ 20190807	zip S2A_ MSIL2A_ 20190810	zip S2A_ MSIL2A_ 20190817	zip S2A_ MSIL2A_ 20190817	s2A_ MSIL2A_ 20190817	s2A_ MSIL2A_ 20190817	s2A_ MSIL2A_ 20190817	zip S2A_ MSIL2A_ 20190817	zip S2B_ MSIL2A_ 20190527	zip S2B_ MSIL2A_ 20190603
zip S2B_ MSIL2A_ 20190603	S2B_ MSIL2A_ 20190606	2ip S2B_ MSIL2A_ 20190613	S2B_ MSIL2A_ 20190613	s2B_ MSIL2A_ 20190613	S2B_ MSIL2A_ 20190613	S2B_ MSIL2A_ 20190613	S2B_ MSIL2A_ 20190616	zip S2B_ MSIL2A_ 20190623	S2B_ MSIL2A_ 20190623	zip S2B_ MSIL2A_ 20190623	S2B_ MSIL2A_ 20190623	zip S2B_ MSIL2A_ 20190623	S2B_ MSIL2A_ 20190623	S2B_ MSIL2A_ 20190703	S2B_ MSIL2A_ 20190703	S2B_ MSIL2A_ 20190703	S2B_ MSIL2A_ 20190703
zip S2B_ MSIL2A_ 20190703	zip S2B_ MSIL2A_ 20190703	zip S2B_ MSIL2A_ 20190713	S2B_ MSIL2A_ 20190713	zip S2B_ MSIL2A_ 20190713	2ip S2B_ MSIL2A_ 20190716	S2B_ MSIL2A_ 20190723	zip S2B_ MSIL2A_ 20190723	zip S2B_ MSIL2A_ 20190723	S2B_ MSIL2A_ 20190723	zip S2B_ MSIL2A_ 20190723	zip S2B_ MSIL2A_ 20190726	zip S2B_ MSIL2A_ 20190802	S2B_ MSIL2A_ 20190802	S2B_ MSIL2A_ 20190802	S2B_ MSIL2A_ 20190802	zip S2B_ MSIL2A_ 20190802	zip S2B_ MSIL2A_ 20190802
zip S2B_ MSIL2A_ 20190805	zip S2B_ MSIL2A_ 20190812	zip S2B_ MSIL2A_ 20190812	zip S2B_ MSIL2A_ 20190812	zip S2B_ MSIL2A_ 20190812	zip S2B_ MSIL2A_ 20190812	s2B_ MSIL2A_ 20190812	zip S2B_ MSIL2A_ 20190815	zip S2B_ MSIL2A_ 20190822	zip S2B_ MSIL2A_ 20190822	zip S2B_ MSIL2A_ 20190822	zip S2B_ MSIL2A_ 20190822						

Analysis ready?

8

Analysis ready?

Earth Observation Data Cubes

- No common definition, mostly a multidimensional array with spatial, temporal, and/or spectral / variable dimensions
- Example: Four dimensional regular raster data cube (*referred to as EODC*):
 - 4d array (x, y, time, bands)
 - Spatial axes aligned with SRS axes
 - $b \times t \times y \times x \rightarrow real number$

- Single spatial reference system (SRS)
- Cells have constant temporal duration, and spatial size

Standards?

- OGC Coverages: More general, include data cubes, point clouds, general meshes
- WCS: Accessing coverages over web services
- WCPS: Processing coverages
- WPS: generic web-based Geoprocessing
- do not solve:
 - How can I run custom Python / R / Julia scripts on the data
 - How to build data cubes from irregular satellite image collections

How to Create Data Cubes?

- Available tools: GDAL + R / Python / ...
- Data cube creation is needed, but not for free: computations, loss of information
- There is no *correct* data cube

Data Cube Implementations

- Earth System Data Cube (ESDC) [1]
- Open Data Cube [2]
- gdalcubes [3]

...

- EuroDataCube [4]
- (Google Earth Engine [5])

EURO DATA CUBE

[1] Mahecha, M. D., Gans, F., Brandt, G., Christiansen, R., Cornell, S. E., Fomferra, N., ... & Donges, J. F. (2020). Earth system data cubes unravel global multivariate dynamics. *Earth System Dynamics*, 201-234.
[2] Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., ... & Wu, W. (2017). The Australian geoscience data cube—foundations and lessons learned. *Remote Sensing of Environment*, 202, 276-292.
[3] Appel, M., & Pebesma, E. (2019). On-demand processing of data cubes from satellite image collections with the gdalcubes library. *Data*, 4(3), 92.
[4] https://eurodatacube.com/
[5] Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.

- Pre-grid vs. on-the fly creation
- dimensionality (n-dimensional vs. fixed dimensions)
- availability of data cube operations and processing algorithms
- availability of programming language interfaces
- support for irregular, labeled dimensions
- flexibility to let users define target cube parameters
- support to run user-defined functions over subsets / dimensions of data cubes
- vector vs. raster data cubes

gdalcubes

A C++ library and R package for on-the-fly creation and processing of Earth observation data cubes

- Open source C++ library (interfacing GDAL, netCDF, SQLite, and a few other libraries)
- R package (available on CRAN) → more accessible to data scientists / statisticians
- Objective: Make complex analysis of satellite image collections easier, more interactive, and faster
- Knows how to read collections from Sentinel-2, Landsat, MODIS, PlanetScope and more
- Four-dimensional raster data cube model (space, time, band / variable)
- On-the-fly creation and processing of data cubes

- Original imagery is *indexed* only \rightarrow no 2nd copy of the data
- Flexibility to apply the same analysis on different spatiotemporal resolution, larger areas, ...
- Data cubes are lazily evaluated (when users call plot / save results)
- Processing works chunk-wise in memory
- Data cube creation may include the application of masks (clouds, QA, ...)

An image collection is a set of n images, where images contain m variables or spectral bands. Band data from one image share a common spatial footprint, acquisition date/time, and spatial reference system but may have different pixel sizes. Technically, the data of bands may come from one or more files, depending on the organization of a particular data product. [1]

- EO data products are distributed in very different formats (see e.g. Sentinel-2 vs. Landsat 8)
- Collection format = set of rules how relevant metadata can be extracted from products
- Includes definition of bands
- Internally, relatively simple JSON format, repository available at https://gdalcubes.github.io/docs/collection_formats.html
- Extensible, documented at

https://github.com/gdalcubes/collection formats

Basic Concepts: Data Cube View

- Data cube view = Cube geometry + creation options
 - spatiotemporal extent,
 - spatiotemporal pixel sizes / counts
 - Coordinate reference system
 - spatial resampling, temporal aggregation

0

- Does not include bands / variables, independent from particular data products
- Spatial resampling methods: (see gdalwarp) near, bilinear, cubic, cubicspline, lanczos, average, mode, max, min, med, q1, q3, sum
- Temporal aggregation methods: min, mean, median, max, sum

Basic Concepts: Regular raster data cube

- Regular raster data cube = image collection + data cube view
- or result of further data cube processing

Minimal R example:

```
library(gdalcubes)
```

```
# 1. Build image collection
files = list.files("~/Sentinel2_data", pattern = ".zip", full.names = TRUE)
S2.col = create_image_collection(files, "Sentinel2_L2A")
```

```
# 3. Build and plot spacetime RGB data cube
raster_cube(S2.col, v) %>%
   select_bands(c("B02","B03","B04")) %>%
   plot(rgb=3:1, zlim=c(0,1200))
```


apply_pixel	Apply arithmetic expressions on band values per pixel
fill_time	Fill missing values by simple time-series interpolation
filter_pixel	Filter pixels based on logical expressions
filter_geom	Filter pixels that do not intersect with a given input geometry
join_bands	Combine bands of two or more identically shaped input data cubes
reduce_space	Apply a reducer function over time slices of a data cube
reduce_time	Apply a reducer function over individual pixel time series
select_bands	Select a subset of a data cube's bands
window_time	Apply a moving window reducer of kernel over individual pixel time series

Extraction from data cubes

query_timeseries	Extract one or more pixel time series
query_points	Export data cube values at irregular spacetime points
zonal_statistics	Compute summary statistics over polygons

Toy example:

- zonal statistics (min, mean, median, max NDVI) over ~50k cadastral districts ("Fluren")
- One year of Sentinel-2 L2A data (> 500 GB)
- Aggregated monthly, 10m spatial resolution

Data Cube Export / Visualization

write_ncdf	Export a data cube as a single netCDF file
write_tif	Export a data cube as a collection of GeoTIFF / COG files
plot	Plot data cubes
animate	Create animations from data cube time slices

- Export supports compression and packing (using smaller integer types instead of double precision floating point)
- Ready to be processed in external software / other R packages

Chaining Data Cube Operations

Operations can be chained, creating a *processing graph*:

User-defined functions can be streamed to time series / spatial slices of a data cube:

Data cubes are created on-the-fly; it is straightforward to go from low resolution experiments to applying algorithms on high resolution.

Example: Derive median RGB values over all pixel time series at different spatial resolution of a collection with approx. 90 GB compressed Sentinel 2 L2A images:

Pixel size	Computation time				
300m x 300m	40 seconds				
50m x 50m	26 minutes				
10m x 10m	2 hours				

Hands on with gdalcubes

- Complex analysis becomes possible with user-defined functions (using functions from any available R package)
- Performance of data cube creation depends on data formats, depending on the method, this may or may not be relevant
- Data model is limited to 4 dimensions (x, y, t, band / variable) and requires orthorectified images. Data such as Sentinel-1 or Sentinel-5P need to be preprocessed before they can be used with gdalcubes. The stars package is much more flexible in these cases.
- Can be used in cloud computing environments, but some work is needed (see discussion later)

Discussion and Outlook

- Lots of ideas for the future work, including
 - openEO backend implementation
 - Data cube export / processing as services (WCS, WMTS, WPS)
 - Easier cloud deployment
 - Python interface?
 - o ...

• Get in touch if you have further ideas, questions, or want to contribute in any other way...

Applications

Examples how EO data cubes can be used for time series processing and for combining data from different EO missions.

Idea: Monitoring the vegetation with NDVI as target variable, using as much information as possible

Dataset	Spatial Resolution (NDVI bands)	Temporal Resolution	File Format
Sentinel-2 Level 2A	10m	5 days	.jp2
Landsat 8 surface reflectance	30m	16 days	GeoTIFF
MODIS MOD09GA	500m	daily	HDF4

(Optimistic) Approach:

- 1. Build three separate NDVI data cubes with the same geometry
- 2. Stack data cubes
- 3. Iterate over individual pixel time series and select best available measurement for each t

(1) Combined NDVI data cube from Sentinel-2, Landsat-8, and MODIS

(1) Combined NDVI data cube from Sentinel-2, Landsat-8, and MODIS

Result (subset, low resolution):

(2) Combined analysis of vegetation, precipitation, and soil moisture

Idea: Analyze correlations between different variables

Dataset	Spatial Resolution	Temporal Resolution	File Format
MODIS 13A2 [1]	1km	16 days	HDF4
GPM_3IMERGDF [2]	0.1°	daily	GeoTIFF
ESA CCI soil moisture [3,4,5]	0.25°	daily	netCDF

(Optimistic) Example:

- 1. Build three separate monthly data cubes with the same geometry
- 2. Preprocess individual data cubes:
 - a. Calculate NDVI + SM anomalies by time series decomposition
 - b. Calculate standardized precipitation index
- 3. Apply tests for temporally lagged correlation

[1] <u>https://lpdaac.usgs.gov/products/mod13a2v006</u>
 [2] <u>https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary</u>
 [3] <u>https://doi.org/10.5194/essd-11-717-2019</u>
 [4] <u>https://doi.org/10.1016/j.rse.2017.07.001</u>
 [5] <u>https://doi.org/10.1109/TGRS.2017.2734070</u>

(2) Combined analysis of vegetation, precipitation, and soil moisture

Result (subset, low resolution):

38

(3) Crop classification with dynamic time warping

- Idea: match multivariate time series to provided patterns
- Method is available as an R package [1]

[1] Maus, V., Câmara, G., Appel, M., & Pebesma, E. (2019). dtwSat: Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis in R. Journal of Statistical Software, 88(5), 1 - 31. doi:http://dx.doi.org/10.18637/jss.v088.i05

(3) Crop classification with dynamic time warping

In progress: Application on Landsat data from 1997 on national scale

Maus, V., Câmara, G., Appel, M., & Pebesma, E. (2019). dtwSat: Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis in R. *Journal of Statistical Software*, *88*(5), 1 - 31. doi:http://dx.doi.org/10.18637/jss.v088.i05

Discussion and Outlook

More Applications of Data Cubes

- Complex machine learning methods, e.g. finding causal effects in multivariate EO time series (see e.g. [1])
- Spatiotemporal Statistics: Dealing with spatiotemporal autocorrelations in the data (e.g. [2])
- In general: time series analysis, combining datasets with different properties., processing large areas
- Does *analysis ready* include the content of pixels?
- Methods need to consider nonoptimal preprocessing (atmospheric correction, cloud masks, ...)

[1] Runge, J., Bathiany, S., Bollt, E. *et al.* Inferring causation from time series in Earth system sciences. *Nat Commun* 10, 2553 (2019).

[2] Appel, M., & Pebesma, E. (2020). Spatiotemporal multi-resolution approximations for analyzing global environmental data. Spatial Statistics, 100465.

Many platforms for EO analysis = Difficult Choice

Use Google Earth Engine (GEE), other cloud services, or do the processing locally / at the university's computing center?

Criteria to decide where to run EO data analysis:

- Availability of data and algorithms
- Costs
- Programming language interfaces¹
- Effort needed for re-implementations
- Trust in long-term existence
- Needed data volume / scalability
- Data cube vs. file interface

¹ addressed in OpenEO project <u>https://openeo.org/</u>

	🖇 🐨 • 🕞 🔐 🚍 🥠 Go to flie/function 🔢 🖥 • 🔛 • Addins •			B opengeohub_summerschool2020 – github	
Dut (orial_01.Rmd × 0_Untitled2* × 0_render_html.R × 0_tutorial_02.Rmd × 0_solutions.R × 130	Environment History	Connections Git Tutorial	-	
	🖉 📄 Source on Save 🔍 🖉 - 📄 👘 Run 👒 🔅 Source - 🧟	🔐 🔒 🖙 Import Dataset	🥔 🖂 🖙 Import Dataset - 🧹		
1	library(gdalcubes)	Global Environment +		9.	
2	a 1 Build imme collection	Data			
- 2	files = list.files("/home/marius/endata/Sentinel2 124/BocaDoAcre", mattern = ".zi	0 Y	List of 4	9	
5	<pre>S2.col = create_image_collection(files, "Sentimel2_L2A")</pre>	Values			
6	a de destante de la constante	files	chr [1:128] "/home/marius/e	odata/Sentinel2_L2A/BocaDoAcre/S2A_MSIL2A	
	<pre>x = cube view(ars="EPS5:3857", extent = list(left=-7240000, right=-7230000,</pre>	\$2.col	External pointer of class '	image_collection'	
9	bottom=-1005000, top=-995999, t0="26				
10	<pre>dx = 30, dy = 30, dt = "PIM", resampling = "average", aggregation="</pre>				
11	a 3. Build and plot spacetime BBB data cube				
13	raster_cube(\$2.col, v) %%				
14	select_bands(c("B02","B03","B04")) %>%				
15	plot(rgb=3:1, 2lim=c(0,1200))				
10					
16:1	(Declared) * B Server *	Files Plots Packages	Help Viewer	- 0	
		💿 📦 🏓 Zoom 🛛 🛺 Ex	ipert = 🔍 🥑	😼 Publish - 🛛	
Conse	le Terminal × Jobs ×				
-1911	ubiopengeohub_summerschool2020/ 0				
	·····				
		2019-06 P1	2019-07 P1M	2019-08 P1M	
2.2	. Define target data cube geometry	8			
· • •	cube_view(srs="EP50:3857", extent = list(left=-7340000, right=-7330000,	3	S	State of the second	
	bottom=-1005000, top=-995999, t0="2019	1000			
00 · ,	dx = 20, dy = 20, dt = "PIN", resampling = "average", apprenations"me				
ian')				
1 53	ze of the cube in x direction does not align with dx, extent will be enlarged by		2, 27 - Main		
10.6	00000 at both sides.				
1.01	20 of the cube in y direction does not align with dy, extent will be entarged by			Contraction of the local division of the loc	
	. Build and plot spacetime ROB data cube				
ras	ter_cube(S2.col, v) %%	and the second second	4.4.		
	elect_bands(c("802","803","804")) %>%	8 13 7 1 1 C 1 1			
	10 20 20 40 50 60 70 00 00 1000				
1	10 10 00 10 00 10 00 00 1000	-7340000 -7336000	-7332000 -7340000 -7336000	-7332000 -7340000 -7336000 -7332000	
a f	and a set and a set a				
	l l l l l l l l l l				

STAC + COGs in the cloud

 SpatioTemporal Asset Catalog → Easy data discovery with modern technology

• STAC API: RESTful WFS3 compatible API for searching STAC items

 Cloud-native image format, supporting HTTP range requests
 → efficient extraction of subsets, and overview images

• More and more provides / platforms offer access to COGs

Summary

- Earth observation data cubes facilitate the extraction of information from large irregular satellite image collections
- Data cubes make it easy to combine data from different satellite-based EO missions
- Construction of data cubes from satellite image collections is complex and involves spatial resampling, reprojection, and temporal aggregation
- gdalcubes is an open-source library and R package to facilitate the analysis of satellite image collections

Contact: marius.appel@uni-muenster.de

Further reading:

- <u>https://www.mdpi.com/journal/data/special_issues/EODC</u>
- <u>https://github.com/appelmar/opengeohub_summerschool2020</u>