

Predicting into unknown space? Estimating the area of applicability of spatial prediction models

Hanna Meyer¹ & Edzer Pebesma²

- 1 Institute of Landscape Ecology, WWU Münster
- 2 Institute for Geoinformatics, WWU Münster

Problem: Moving from field observations to maps of ecosystem variables

Problem: Moving from field observations to maps of ecosystem variables

Problem: Moving from field observations to maps of ecosystem variables

How do we fill the gaps between sampling locations?

Remote Sensing of landscapes

Remote Sensing of landscapes

Remote Sensing of landscapes

Global maps of ecosystem variables based on machine learning

Proportion of publications that use machine learning in environmental remote sensing

Global maps of ecosystem variables based on machine learning

Proportion of publications that use machine learning in environmental remote sensing

Including **global** datasets on

- soil properties
- abundances of microorganisms
- Biodiversity
- tree restoration potential
- ...and many more

Global maps of ecosystem variables based on machine learning

Proportion of publications that use machine learning in environmental remote sensing

Including **global** datasets on

- soil properties
- abundances of microorganisms
- Biodiversity
- tree restoration potential
- ...and many more

Machine learning as a "magic tool" to map basically everything?

...but there are increasingly doubts about the methods

Wissenschaft

Wenn die KI daneben liegt

Welche Fehler drohen, wenn Forscher Wissenslücken per Computer schließen wollen, zeigen zwei aktuelle Klimastudien.

Von Tin Fischer

6. November 2019, 16:44 Uhr / Editiert am 9. November 2019, 17:42 Uhr / DIE ZEIT Nr. 46/2019, 7. November 2019 / 9 Kommentare

BY DOUGLAS HEAVEN Nature 574, 163-166 (2019)

Home / News & Opinion

Researchers Find Flaws in High-Profile Study on Trees and Climate

Four independent groups say the work overestimates the carbon-absorbing benefits of global forest restoration, but the authors insist their original estimates are accurate.

Oct 17, 2019 KATARINA ZIMMER www.the-scientist.com

...but there are increasingly doubts about the methods

Wissenschaft

Wenn die KI daneben liegt

Welche Fehler drohen, wenn Forscher Wissenslücken per Computer schließen wollen, zeigen zwei aktuelle Klimastudien.

Von Tin Fischer

6. November 2019, 16:44 Uhr / Editiert am 9. November 2019, 17:42 Uhr / DIE ZEIT Nr. 46/2019, 7. November 2019 / 9 Kommentare

BY DOUGLAS HEAVEN Nature 574, 163-166 (2019)

Home / News & Opinion

Researchers Find Flaws in High-Profile Study on Trees and Climate

Four independent groups say the work overestimates the carbon-absorbing benefits of global forest restoration, but the authors insist their original estimates are accurate.

Oct 17, 2019 KATARINA ZIMMER www.the-scientist.com

Have we been too ambitious? Why might the models fail?

Transfer to new space required

-0.8 -0.8 -0.6 -0.2

- Transfer to new space required
- New space might differ in environmental properties

- Transfer to new space required
- New space might differ in environmental properties
- But what if the algorithm has never seen such properties?

Machine learning models are weak in extrapolations

 Machine learning can fit very complex relationships.

Machine learning models are weak in extrapolations

- Machine learning can fit very complex relationships.
- But gaps in predictor space are problematic (the model has no knowledge about these areas!)

Machine learning models are weak in extrapolations

Predictor

- Machine learning can fit very complex relationships.
- But gaps in predictor space are problematic (the model has no knowledge about these areas!)
- A measure for "unknown space" is needed

 Unknown space: Environmental conditions that are very different from the training locations

 Unknown space: Environmental conditions that are very different from the training locations

- Unknown space: Environmental conditions that are very different from the training locations
- Suggestion: Dissimilarity Index based on distances in the (weighted) predictor space*

- Unknown space: Environmental conditions that are very different from the training locations
- Suggestion: Dissimilarity Index based on distances in the (weighted) predictor space*

For each new location/pixel: how distant is it from what the algorithm has seen?

Predictors

Virtual Response and simulated samples

Virtual Response and simulated samples

Virtual Response and simulated samples

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0

Where can we trust the predictions and where should we better not?

Why is it relevant to map the area of applicability?

Results are not just nice maps but used for...

- subsequent modeling
- nature conservation
- risk assessment

•

Why is it relevant to map the area of applicability?

Results are not just nice maps but used for...

- subsequent modeling
- nature conservation
- risk assessment
- •

Predictions should only be presented for the area of applicability to avoid error propagation or misplanning (and to keep trust in the methods)!

More information

- Meyer H, Pebesma E: Predicting into unknown space? Estimating the area of applicability of spatial prediction models. https://arxiv.org/abs/2005.07939
- Method implemented in the R Package "CAST": https://CRAN.R-project.org/package=CAST
- Tutorial: https://github.com/HannaMeyer/OpenGeoHub_2020

