

DISTRIBUTED SERVICES FOR ENABLING THE AUTOMATED PROCESSING OF BIG EARTH OBSERVATION DATA

Sebastian Drost^{1,2}, Christian Danowski-Buhren¹, Arne Vogt¹, Matthes Rieke²

1: Bochum University of Applied Sciences, Department of Geodesy 2: 52°North GmbH

Geospatial Sensing | Virtual 2020

Münster, August 31 – September 02

Motivation

- Increased sediment and material inputs into watercourses and dams caused by:
 - Intensification of agriculture (e.g. more frequent fertilization)
 - Increased number of extreme weather events (e.g. heavy rain, drought) as a result of climate change

Fertilization

Soil erosion

- New challenges for water authorities and suppliers regarding the quality control of drinking water
 - Need for an improved water monitoring program
 - Development of strategies to reduce pollutant inputs into water bodies

Project Overview

- WaCoDiS Copernicus-based services for monitoring material inputs in watercourses and dams
- Funded by the Federal Ministry of Transport and Digital Infrastructure as part of the mFUND programme
- Wupper region in North-Rhine Westfalia, Germany
- Wupperverband as the responsible water authority
 - Operation of river dams and sewage treatment plants
 - Managing sensor network for in-situ data
- Project Partners:

Project Goals

- Development of an improved water monitoring program that comprises:
 - Advanced environmental monitoring by providing analytics services and EO products
 - E.g. Analysis of the interannual variability of land-cover, soil moisture and nutrient balance
 - Combining in-situ and remote-sensing data in order to optimize hydrological models for
 - Sediment transport and erosion, nutrient pollution, ...
 - Integration of CODE-DE infrastructure for processing Big Earth Observation Data
- Geolocating and quantifying material outputs from agricultural areas

Detailed land classification

Change of water-land borders

Sediment transport modelling

Focus: Big EO Data Processing

Challenges in Big EO Data Processing

- 1. Sharing expert knowledge in EO data processing (EO processing workflows, algorithms and analysis information) with domain users
- 2. Facilitation of accessibility and usability of cloud computing platforms for non programmers
- 3. Increasing the interoperability and portability of EO processing services across different cloud providers
- 4. Support for reproducibility of processing results to increase the trust in EO based information

Automated Processing Workflow

System Architecture

Microservice Design

- Single services will handle the process workflow tasks
- Loose coupling of collaborating services
- Container deployment

Publish/Subscribe Pattern

- Message-based communication via a message broker
- Asynchronous event handling (e.g. "job created")
- Process triggering as soon as required data is available

Data Centre Observation

- Dedicated components observe different data centres
 - Sensor Web, CODE-DE, DWD, ...
- Metadata exchange of required datasets
 - Interested components subscribe for data availabilities

Domain Model

• Execution triggers

- Event-based: *e.g. on data availability*
- Pattern-based (crontab syntax): 001 * *

Spatio-temporal coverage

- Area of interest as GeoJSON bounding box
- Temporal coverage as backwarts duration

Input data subset definitions

- Criterias relate to specific datasets
 - e.g. mission ID and product level for Sentinel-2 data
- API for message exchanges
 - Provision of required information for system components
 - Enables the extension by new components

```
"name": "interannual-soil-moisture-detection",
"execution": {
  "pattern": "0 0 1 * *"
}.
"temporalCoverage": {
  "duration": "PT1M"
},
"areaOfInterest": {
  "extent": [7.000, 52.000, 7.100, 52.100]
"processingTool": "soil-moisture-detection",
"inputs": [
    "sourceType": "CopernicusSubsetDefinition",
    "id": "LCC-INPUT-01",
    "satellite": "sentinel-2",
    "productLevel": "LEVEL2A",
    "maximumCloudCoverage": "75"
```

Approaching Interoperability

- Encapsulation of EO data processing by OGC Web Processing Service (WPS) 2.0
 - Standardized interface for synchronous and asynchronous processing tasks
 - Allows the definition of inputs, outputs and processing parameters
- WPS is the main entrypoint to all supported EO tools
 - Each WPS process encapsulates execution details for certain tools
 - WaCoDiS System interacts with WPS interface to trigger tool executions
- Standardized interface allows the lightweight introduction of additional tools that operate in the cloud

EO Product Ingestion

Reproducibility of Processing Results

- Domain users have to trust in automated generated EO information in order to reuse EO products for own applications in a reliable way
 - E.g. calculated land cover classes must be valid within a certain area to reuse it for hydrologic modeling and simulation
- Required meta information for EO products
 - Spatio-temporal coverage and creation timestamp
 - Information about the services that provide the product
 - E.g. ArcGIS Image Service information
 - Description of the underlying algorithm that produced the result
 - E.g. WPS process description (possible via *DescribeProcess* request)
 - Input datasets that were used for processing
 - Accuracy of the resulting product (especially for classification results)

Reproducibility of Processing Results

• WaCoDiS System generated metadata for a land cover classification


```
"areaOfInterest": {
  "extent": [6.927, 51.279, 7.447, 51.337]
},
"timeFrame": {
  "startTime": "2020-08-12T10:30:31.024Z".
  "endTime": "2020-08-12T10:30:31.0247"
}.
"created": "2020-08-19T10:00:50.888Z",
"productType": "land-cover-classification",
"inputReferences": ["T56q5nMBSGSeK10aP4 T"],
"envelopeService": "https://demo.wacodis.org/data-access/envelopes",
"process": "de.hsbo.wacodis.land cover classification",
"serviceDefinition": {
  "backendType": "ArcGISImageServerBackend",
  "productCollection": "EO:WACODIS:LAND COVER CLASSIFICATION",
  "baseUrl": "https://gis.wacodis.org:6443/arcgis",
  "serviceTypes": ["ImageServer"]
```

Deployment Patterns

Bochum University

of Applied Sciences

CODE-DE Deployment (Concept)

- Use of the CODE-DE processing environment via virtual machines
 - Direct access to Sentinel and Landsat collections (mounted into VMs via S3 interface)
 - Computation resources limited by user category
 - Project setup: 8 vCPU, 64 GB RAM, 2 TB block storage, 1 TB file storage, 1 public IP
- VM 1: Hosting the WPS with external access
 - Triggering containerized EO tools via Docker REST API
- VM 2: Running predefined processing scripts
 - Subset of Sentinel Toolbox operators
- VM 3: Running custom developed algorithms
 - Creating EO products for water monitoring

Conclusion

- The proposed WaCoDiS System facilitates the use of Earth Observation information for water monitoring tasks
 - Users order a product -> WaCoDiS handles processing and provision tasks automatically
- No vendor lock-in due to standardized WPS interface for wrapping EO tools
- Detailed processing metadata contribute to EO product reproducibility

Outlook

- System validation as part of an pre-operational deployment, considering different test scenarios defined by the Wupperverband
- Evaluation of the CODE-DE deployment concept
- Taking into account accuracy information for EO products (metadata inclusion)

Hochschule Bochum Bochum University of Applied Sciences

ANY QUESTIONS OR COMMENTS?

Sebastian Drost

sebastian.drost@hs-bochum.de

Geospatial Sensing | Virtual 2020

Münster, August 31 – September 02

GS | V 2020 – Münster, August 31- September 02