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How do we fill the gaps between sampling locations?
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Remote Sensing of landscapes 

how can this be used to derive 
ecologically relevant information?

Spatially continuous but it’s only reflectances...
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Predictive modelling of the environment: The 
machine learning way

Algorithm
learns relationships Model

Spatial prediction
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Global maps of ecosystem variables based on 
machine learning

Proportion of publications that use machine 
learning in environmental remote sensing

Data based on 
ScienceDirect search

Including global datasets on 
● soil properties
● abundances of 

microorganisms
● Biodiversity
● tree restoration potential 
● ...and many more

Machine learning as a „magic tool“ to map basically everything ?
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...but there are increasingly doubts about the 
methods

Nature 574, 163-166 (2019)

www.the-scientist.com
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...but there are increasingly doubts about the 
methods

Nature 574, 163-166 (2019)

www.the-scientist.com

Have we been too ambitious? Why might the models fail?
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Largest challenge: predictions far beyond 
training samples

● Transfer to new space required

● New space might differ in 
environmental properties

● But what if the algorithm has 
never seen such properties?
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Machine learning models are weak in 
extrapolations

• Machine learning can fit very 
complex relationships. 

• But gaps in predictor space are 
problematic (the model has no 
knowledge about these areas!)

• A measure for “unknown space” 
is needed
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Distances in feature space as a measure for 
“unknown space”

• Unknown space: Environmental 
conditions that are very different 
from the training locations

• Suggestion: Dissimilarity Index 
based on distances in the 
(weighted) predictor space*

For each new location/pixel: how distant is it 
from what the algorithm has seen?

Is this 
environment 
known to the 
model?

*More details:  https://arxiv.org/abs/2005.07939
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Mapping the area of applicability - Example

Predictors

Virtual Response and simulated samples

Prediction

Where can we trust the predictions 
and where should we better not?

R²=0.95
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Mapping the area of applicability - Example

Outside AOA

Predictions only for the AOA

Dissimilarity Index True Prediction error

Threshold =  DI of cross-validated training data

DI < threshold = inside AOA
DI > threshold = outside AOA
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used for…

• subsequent modeling
• nature conservation
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outside AOA
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Why is it relevant to map the area of 
applicability?

Results are not just nice maps but 
used for…

• subsequent modeling
• nature conservation
• risk assessment 
• ...

Predictions should only be presented for the area of applicability to 
avoid error propagation or misplanning (and to keep trust in the 
methods)!

outside AOA
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More information

• Meyer H, Pebesma E: Predicting into unknown space? Estimating the 
area of applicability of spatial prediction models.
https://arxiv.org/abs/2005.07939

• Method implemented in the R Package “CAST”: 
https://CRAN.R-project.org/package=CAST

• Tutorial: https://github.com/HannaMeyer/OpenGeoHub_2020

https://arxiv.org/abs/2005.07939
https://CRAN.R-project.org/package=CAST
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